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Abstract

This communication puts forward a novel method for independent source extraction in instantaneous

linear mixtures. The method is based on the conditional mean of the whitened observations and requires

some prior knowledge of the positive support of the desired source. A theoretical performance analysis

yields the closed-form expression of the asymptotic interference-to-signal ratio (ISR) achieved by this

technique. The analysis includes the effects of inaccuracies in the estimation of the positive support of

the desired source in single-step and iterative implementations of the algorithm. Numerical experiments

validate the fitness of the asymptotic approximations. As it is based on first-order statistics, the method

is extremely cost-effective, which makes it an attractive alternative to second- and higher-order statistical

techniques in power-limited scenarios.
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1. Introduction

Independent component analysis (ICA) has received considerable attention over the last decades,

mainly due to its wide variety of application domains. In particular, ICA is the key tool for blind source

separation in instantaneous linear mixtures when the sources are statistically independent, an assumption

quite plausible in many scenarios. Seminal work on ICA focused on the direct exploitation of statistical

independence through higher-order statistics (HOS), mostly the cumulants [1–3]. Time coherence was

later shown to be a valid separation criterion requiring second-order statistics (SOS) only [4]. More

recent research has aimed at taking advantage of prior knowledge about the mixing system or the sources

themselves. This may include information on the support of the source of interest, i.e., the time or

frequency indices where the desired source is positive or presents significant power [5, 6]. These source
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extraction methods can be formulated by means of conditional SOS, and essentially require the solution

of an eigenvalue decomposition (EVD) or generalized EVD problem per iteration.

In the present work, Section 2 puts forward a novel technique of this type based on the first-order

statistics of the whitened observations. Originally suggested in [7], the technique is computationally very

efficient, which renders it particularly appealing in power-limited scenarios such as embedded systems

or wireless sensor networks. The method requires prior knowledge of the positive support of the desired

source; in practice, this amounts to the time or frequency snapshot indices where the source of interest is

positive. Although the SOS used in [5] are also conditioned on the positive support, the present approach

can deal with any source distribution without any modification, and presents lower computational com-

plexity. Moreover, the impact of support estimation inaccuracies on the performance of the new method

can be quantified by the theoretical analysis carried out in Section 3. Section 4 analyzes an iterative

implementation that may be used when the knowledge of the positive support is uncertain, as may be

the case in realistic scenarios where the available prior information is scarce. The experimental study

of Section 5 validates the accuracy of the theoretical performance analysis. In the light of these results,

some potential applications are discussed in Section 6, while the concluding remarks of Section 7 bring

the paper to an end.

2. Independent Source Extraction Based on the Conditional Mean

The present work considers the source separation model in instantaneous linear mixtures:

z(t) = Qs(t) (1)

where z(t) ∈ Rn is the whitened observation vector and s(t) ∈ Rn the source vector with components

s(t) = [s1(t), s2(t), . . . , sn(t)]T. Matrix Q ∈ Rn×n represents the unitary transformation linking sources

and observations after prewhitening. Without loss of generality, we will suppose that s1(t) is the source

of interest. The new method essentially relies on two common assumptions in ICA:

A1) The source signals s(t) are zero mean.

A2) The source signals s(t) are statistically independent.

The method can be expressed in terms of the conditional mean of the whitened observations, as summa-

rized by the following result.

Proposition 1. The linear extractor

w = E{z | s1 > 0} (2)
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recovers the source of interest up to an irrelevant positive scale factor:

y = wTz = αs1 with α
def
= E{s1 | s1 > 0} > 0. (3)

Proof. According to model (1) and the linearity of the expectation operator, we have w = E{z | s1 >

0} = E{Qs | s1 > 0} = Qg, where

g = E{s | s1 > 0}. (4)

Now, E{s1 |s1 > 0} = α and, by virtue of assumptions A1–A2, E{sk |s1 > 0} = E{sk} = 0, for 1 < k ≤ n.

Hence, g = αe1, where e1 denotes the first column of the (n × n) identity matrix. It follows that

y = wTz = gTQTQs = gTs = αs1. �

In practice, applying the above result requires the prior knowledge of indices t where the source of

interest presents positive values; in the sequel, this set of indices will be referred to as positive support.

The idea behind this source extraction method is simple yet effective: thanks to the independence and

zero-mean assumptions A1–A2, averaging the observations over the positive support of the desired source

brings out its mixing direction. Under the mixing matrix orthogonality imposed by whitening, the

estimated mixing direction can be directly applied on the observed vector to recover the source of interest

and cancel out the other sources. The performance of the ICA extractor based on the conditional mean

is analyzed in the rest of the paper.

3. Theoretical Performance Analysis

This section aims to quantify the source extraction performance obtained by the technique summarized

above, including the impact of the imperfect estimation of the desired source positive support. Specifically,

we look for a closed-form expression of the theoretical interference-to-signal ratio (ISR) obtained by this

source extraction technique. To simplify the following development, we will make two further assumptions:

A3) The source signals are composed of i.i.d. samples.

A4) The source of interest has a symmetric distribution.

Note, however, that the method resulting from Proposition 1 remains valid even if A3–A4 do not hold.

Since we are interested in the practical setting of finite observation lengths, let us assume that

the observations are made up of a block of T samples; the corresponding index set is denoted T =

{0, 1, . . . , T − 1}. The set of indices t ∈ T for which s1(t) > 0 and its complement are denoted T1 and
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T̄1, respectively. Let S represent the index set estimated as the positive support of the source of interest;

under assumption A4, the cardinality of this set is N ≈ T/2. The set S is the union of set S1 composed

of N1 indices correctly identified, i.e., for which actually s1(t) > 0, and its complement S̄1 of (N −N1)

indices in S where s1(t) < 0; we can express these sets as the intersections S1 = S ∩ T1 and S̄1 = S ∩ T̄1.

We denote r = N1/N the correct index classification ratio, that is, the probability that s1(t) > 0 over

the selected indices. The remaining of this section shows how the performance of extractor (2) explicitly

depends on this parameter.

Given the observed data block, we first remove the sample mean by subtracting 1/T
�

t∈T s(t) from

every sample, a customary operation in ICA. Estimator (2) yields the following sample version of the

global transformation (4) from the sources to the extractor output:

ĝ =
1

N

�

t∈S
s(t)− 1

T

�

t∈T
s(t) =

1

T

�

t∈S
s(t)− 1

T

�

t∈S̄

s(t) (5)

where S̄ is the complement of S in T , i.e., T = S ∪ S̄ with S ∩ S̄ = ∅, and we have assumed N = T/2.

Note that the mean-ergodicity of the sources is necessary for estimating the conditional mean by a

sample average. Denoting ĝ = [ĝ1, ĝ2, . . . , ĝn]T, the extractor output can be decomposed as the sum of

contributions from the source of interest and the interfering sources:

ŷ = ĝTs = ŷ1 + b̂ with ŷ1 = ĝ1s1 and b̂ =
n�

k=2

ĝksk. (6)

To quantify source extraction performance, we define the average ISR per interfering source as:

ISR =
E{b̂2}

(n− 1)E{ŷ21}
=

�n
k=2 E{ĝ2k}

(n− 1)E{ĝ21}
. (7)

Hence, computing the average ISR requires the calculation of E{ĝ2k}, for 1 ≤ k ≤ n. To do so, we will

resort to the equality E{ĝ2k} = E{ĝk}2 + var{ĝk}. The linearity of the expectation operator and the

additivity of the variance under the i.i.d. assumption A3 yield on eqn. (5):

E{ĝk} =
1

T

�

t∈S
E{sk(t)}−

1

T

�

t∈S̄

E{sk(t)} var{ĝk} =
1

T 2

�

t∈S
var{sk(t)}+

1

T 2

�

t∈S̄

var{sk(t)}. (8)

For k �= 1, and taking into account the independence assumption A2 and the unit-power source convention,

we have E{sk(t)} = 0 and var{sk(t)} = 1, for all t, so that

E{ĝ2k} =
1

T
k �= 1. (9)

The computation of E{ĝ21} is simplified by considering the symmetry assumption A4, which allows us to

write:

E{s1(t)} =






α, t ∈ T1

−α, t ∈ T̄1
var{s1(t)} = (1− α2), t ∈ T1 or t ∈ T̄1 (10)
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Table 1: Conditional mean α = E{s | s > 0} for some normalized distributions.

Bernoulli Sinusoid Uniform Laplacian Gaussian

1 2
√
2

π

√
3
2

1√
2

�
2
π

where the conditional mean α is defined in eqn. (3). The variance expression has taken into account that,

for t ∈ T1, var{s1(t)} = var{s1 | s1 > 0} = E{s21 | s1 > 0}− E{s1 | s1 > 0}2 = 1− α2 and, by symmetry,

var{s1 | s1 > 0} = var{s1 | s1 < 0}. Now, N1 indices of S belong to T1 and the remaining (N −N1) to T̄1;

by symmetry, set S̄ contains (N −N1) indices in T1 and N1 in T̄1. Hence, from eqn. (10), the mean and

variance in eqn. (8) can be developed for k = 1 as:

E{ĝ1} = (2r − 1)α var{ĝ1} =
1

T
(1− α2). (11)

The terms in eqn. (11) prove that, for sufficient sample size, E{ĝ21} is dominated by E{ĝ1}2 and, as a

result, E{ĝ21} ≈ E{ĝ1}2 = (2r − 1)2α2. Combining this expression with eqns. (7) and (9), we obtain the

theoretical average ISR of the conditional-mean ICA extractor (2):

ISR =
1

T (2r − 1)2α2
. (12)

This expression explicitly shows the negative impact of inaccuracies in the desired source support estimate,

since performance deteriorates as the ratio r of correctly classified indices tends to 0.5. The symmetry of

formula (12) with respect to r = 0.5 reflects the symmetry of the desired source distribution: estimating

its positive support with correct classification ratio r is equivalent to estimating its negative support with

ratio (1− r); also, the condition s1 < 0 in eqn. (2) leads to the same source estimate, up to a sign, than

the condition s1 > 0. The fitness of this finite-sample approximation and the effect of support estimation

errors will be assessed in the experiments of Section 5. Table 1 summarizes the values of the conditional

mean α for some common probability distributions.

Remark. If the sample mean is not removed from the observations, eqn. (5) becomes ĝ = 1/N
�

t∈S s(t)

and eqn. (8) needs to be modified accordingly. The above development then leads to var{ĝk} = 1/N =

2/T , k �= 1, and var{ĝ1} = (1− α2)/N , whereas the expected values of ĝk remain unchanged, 1 ≤ k ≤ n.

The asymptotic average ISR will thus experience a 3-dB increase relative to eqn. (12) under the same

system conditions.
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4. Iterative Implementation

In practical settings the source positive support is unknown or can only be roughly estimated. To

overcome this difficulty, we can consider the following iterative implementation:

Algorithm 1

Step 1. Define the set S at random or exploiting some available prior knowledge.

Step 2. Estimate the extractor output using the sample version of eqn. (2).

Step 3. From the extractor output (3), obtain a new estimate of S as {t : y(t) > 0}.

Step 4. Using the new support estimate, go back to Step 2 until convergence.

If required, additional sources may be extracted by using the above algorithm in a deflation scheme,

whereby the contribution of each estimated source is subtracted from the observations (e.g., via linear

regression) before searching for the next source. For a given sample size and source distribution, eqn. (12)

shows that the performance of source extractor (2) depends on parameter r, the correct index classification

ratio. The support re-estimation from the extractor output in Step 3 will generally produce a new value

of this parameter. In turn, application of Step 2 on the new support estimate will yield a new ISR

according to (12), and so forth. Hence, the theoretical evolution of the above iterative algorithm can be

analyzed by computing the probability of correct support estimation, defined as r� = P (s1 > 0 | ŷ > 0),

achieved by Steps 2–3.

To this end, first note that Bayes theorem P (s1 > 0 | ŷ > 0) = P (s1 > 0)P (ŷ > 0 | s1 > 0)/P (ŷ > 0)

reduces to P (ŷ > 0 | s1 > 0) since P (s1 > 0) = P (ŷ > 0) = 0.5 for symmetric distributions. Working out

P (ŷ > 0 | s1 > 0) requires the integration of pŷ|s1>0(u) over [0,+∞), where pŷ|s1>0(u) is the probability

density function (pdf) of ŷ given s1 > 0. To compute this pdf, we note that the terms due to the source

of interest and the interference in eqn. (6) are independent by virtue of assumption A2. Also, recall that

the mean of ĝ1 dominates its variance for sufficient sample size [eqn. (11)], so that the desired source

term in eqn. (6) can be approximated by ŷ1 ≈ E{ĝ1}s1 = α̂s1, with

α̂
def
= (2r − 1)α. (13)

The pdf of the extractor output over the positive support of the desired source is then: pŷ|s1>0(u) =

� +∞
−∞ pα̂s1|s1>0(τ)pb̂(u−τ)dτ = 2

� +∞
0 pα̂s1(τ)pb̂(u−τ)dτ , where the second equality follows from pα̂s1|s1>0(τ) =

0, τ < 0, and pα̂s1|s1>0(τ) = 2pα̂s1(τ), τ > 0, for symmetric distributions. From the Central Limit Theo-

rem, the interference term b̂ behaves as a zero-mean Gaussian random variable with variance

σ2 =
n�

k=2

E{ĝ2k} =
n− 1

T
(14)
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where we have made use of eqn. (9). All the above considerations yield:

r
� = P (s1 > 0 | ŷ > 0) =

� +∞

0
pŷ|s1>0(u)du = 2

� +∞

0

� +∞

0
pα̂s1(τ)

1√
2πσ

exp

�
− (u− τ)2

2σ2

�
dτdu.

The change of variable v = (u− τ)/(
√
2σ) and the error function erf(x) = 2√

π

� x
0 e−v2

dv finally lead to:

r
� =

1

2
+

� +∞

0
pα̂s1(τ)erf

�
τ√
2σ

�
dτ. (15)

The integral term on the right-hand side of eqn. (15) quantifies how the correct support estimation

probability will depart on average from 0.5, which is the worst-case scenario. If σ is small enough then

erf(τ/
√
2σ−1) ≈ 1 for τ > 0, and the above integral yields r� ≈ 1 as soon as α̂ �= 0, i.e., r �= 0.5 [eqn. (13)].

According to eqn. (14), a sufficient sample length guarantees a small value of σ.

As an example, let us consider the case of a desired source with symmetric Bernoulli distribution, in

which pα̂s1(τ) =
1
2δ(τ − α̂) for τ > 0, and α̂ = (2r− 1) [eqn. (13) and Table 1]. Plugging these terms and

expression (14) into eqn. (15) leads to the fixed-point like update:

(2r� − 1) = erf

��
T

2(n− 1)
(2r − 1)

�
. (16)

If positive constant γ is large enough, then erf(γx) > x for x ∈ [0, 1) and erf(γ) ≈ 1. Therefore, for

sufficient sample size the above iteration will converge to a fixed point near r� = 1 if the initial value of

r is greater than 0.5.

Before closing this section, remark that the conditional-mean ICA extractor update in Step 2 requires

just n products per iteration, regardless of the data block size T ; these are the n multiplications by 1/T

in eqn. (5). This contrasts with the O(n2T ) products of the conditional SOS techniques of [5, 6], or even

the O(nT ) products of FastICA [3], one of the most computationally attractive ICA methods proposed

to date.

5. Experimental Results

A few numerical experiments first assess the accuracy of the single-iteration theoretical analysis carried

out in Section 3 as well as the impact of support estimation errors. This is followed by the empirical

analysis of the iterative implementation developed in the previous section.

Single iteration. T -sample blocks of unitary mixtures of n independent sources are observed, mimick-

ing the whitened-sensor model of eqn. (1). In the first experiment, the positive support of the source of

interest is assumed to be perfectly known. Figure 1 (left) shows the ISR obtained by a single iteration of

the conditional-mean ICA extractor (2) for different distributions of n = 20 sources. Results are averaged
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Figure 1: Performance of a single iteration of the conditional-mean ICA extractor. (Left) ISR versus sample size for

mixtures of n = 20 sources and r = 1. (Right) ISR versus correct index classification ratio for mixtures of n = 20 sources

and T = 1000 samples. In both plots, the ISR is averaged over 100 Monte Carlo runs.

over 100 independent Monte Carlo runs. The fitness of approximation (12) with the α values of Table 1

is very precise in all cases, even for low sample size. Next, we fix T = 1000 samples and repeat the

experiment for different values of the correct index classification ratio r. Figure 1 (right) shows that

performance deteriorates as r → 0.5, as predicted by eqn. (12). Again, this asymptotic approximation

proves very accurate in all cases.

Iterative implementation. The iterative implementation of Section 4 is applied on unitary mixtures of

n = 10 symmetric binary sources composed of T = 1000 samples. Figure 2 shows the average trajectories

of r and ISR obtained by Algorithm 1 over 100 Monte Carlo runs, for different initial values of the correct

index classification ratio, labelled as r1 in the plots. Also shown are the theoretical trajectories defined

by (16) and the corresponding ISR values given in (12). For the considered mixture setting, the predicted

r-value evolution (Fig. 2, left) is quite accurate if the initial value of r is not too close to 0.5. The expected

ISR trajectory (Fig. 2, right) is less precise as r1 decreases, but can at least match the kurtosis-based

FastICA [3] while recovering the source of interest. Considering the computational load per iteration, the

quality-cost trade-off superiority of the conditional-mean ICA is even more apparent, despite FastICA’s

theoretical global cubic convergence.

6. Discussion

Successfully targeting specific sources with the conditional-mean ICA technique analyzed in this paper

requires some prior knowledge of their positive support. In digital communications, support information
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Figure 2: Performance of the iterative implementation of the conditional-mean ICA extractor for mixtures of n = 10 binary

sources, T = 1000 samples and 100 Monte Carlo runs. (Left) Trajectories of the correct index classification ratio for different

initial values of this parameter. (Right) ISR trajectories for different initial values of the correct index classification ratio.

FastICA’s ISR values are computed without reference to any particular source.

would be available over the pilot sequence, so that the proposed method could be combined with classical

training-based receivers yielding semi-blind equalizers with reduced complexity. A number of space-time

coded systems like Alamouti’s scheme lead to observation models with a unitary mixing matrix [8], thus

sparing the need for prewhitening and preventing its asympotic performance limitations [2]. The proposed

technique would be fully based on first-order statistics in such scenarios.

The signal of interest is partially known in certain signal processing problems involving the electro-

cardiogram (ECG). During atrial fibrillation, the most common sustained cardiac arrhythmia, the atrial

activity signal to be analyzed in the ECG is masked by the ventricular activations or heartbeats, but

remains visible in the intervals between them [9]. The absence of interference in such intervals would

increase the accuracy of the initial support selection for extracting the atrial sources over the whole ECG

recording using the conditional-mean ICA technique.

In some cases, applying the proposed method to particular real-world problems may call for application-

dependent modifications, which, due to lack of space, are out of the scope of this letter.

7. Conclusions

This work has presented a novel method for ICA based on the conditional first-order statistics of

the observed data. Compared to ICA methods based on SOS or HOS, the new method presents a very

low computational complexity, which makes it particularly convenient in power-limited scenarios such as
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wireless sensor networks or embedded systems. The method’s extraction performance depends on the

accurate estimation of the positive support of the source of interest, but further iterations can improve

the precision of the initial support estimate and thus the source extraction quality for sufficient sample

size. Future work should analyze the source extraction capabilities of the proposed method in fully blind

scenarios, explore its extension to complex-valued data, and evaluate its comparative performance in

real-world applications.
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[8] H. J. Pérez-Iglesias, J. A. Garćıa-Naya, A. Dapena, L. Castedo, V. Zarzoso, Blind channel identi-

fication in Alamouti coded systems: a comparative study of eigendecomposition methods in indoor

transmissions at 2.4 GHz, European Transactions on Telecommunications 19 (7) (2008) 751–759.

[9] V. Zarzoso, Extraction of ECG characteristics using source separation techniques: exploiting statisti-
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