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Abstract—A novel automated approach to quantitatively evalu-
ate the degree of spatio-temporal organization in the atrial activity
(AA) during atrial fibrillation (AF) from surface recordings, ob-
tained from body surface potential maps (BSPM), is presented. AA
organization is assessed by measuring the reflection of the spatial
complexity and temporal stationarity of the wavefront patterns
propagating inside the atria on the surface ECG, by means of prin-
cipal component analysis (PCA). Complexity and stationarity are
quantified through novel parameters describing the structure of
the mixing matrices derived by the PCA of the different AA seg-
ments across the BSPM recording. A significant inverse correlation
between complexity and stationarity is highlighted by this analysis.
The discriminatory power of the parameters in identifying differ-
ent groups in the set of patients under study is also analyzed. The
obtained results present analogies with earlier invasive studies in
terms of number of significant components necessary to describe
95% of the variance in the AA (four for more organized AF, and
eight for more disorganized AF). These findings suggest that au-
tomated analysis of AF organization exploiting spatial diversity
in surface recordings is indeed possible, potentially leading to an
improvement in clinical decision making and AF treatment.

Index Terms—Atrial fibrillation (AF), body surface potential
mapping (BSPM), cluster analysis, principal component analysis
(PCA), singular value decomposition (SVD), spatial topographies.

I. INTRODUCTION

DURING atrial fibrillation (AF), the atrial tissue is activated
by multiple wavelets showing uncoordinated patterns, ap-
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pearing as an irregular heart rhythm disturbance with no de-
tectable relationship between consecutive beats. For this reason,
AF has often been studied as a random phenomenon [1], [2].
Nonetheless, several studies have demonstrated the presence of
organization of atrial activation processes during AF, indicat-
ing that a certain degree of local organization exists during AF,
likely caused by deterministic mechanisms of activation [3], and
inversely depending on the chronification of the pathology [4].
Moreover, several authors have observed that different types of
AF patterns could be concurrently present at different locations
during experimental AF [5], [6]. Hence, from a pathophysiologi-
cal point of view, it can be inferred that AF is not a homogeneous
arrhythmia [7]. Different strategies for its treatment are selected
with respect to the duration of its episodes [8], and their efficacy
may also be influenced by the degree of organization in the atrial
activity (AA) [9].

Motivated by their potential relevance in clinical decision
making, a number of earlier studies have attempted to distin-
guish between organized and disorganized states of AF by ana-
lyzing atrial electrograms [10], [11]. Konings et al. [11], in the
attempt of reconstructing and classifying the patterns of human
right atrial activations during electrically induced AF, defined
three types of AF based on the degree of complexity of atrial
activations. An increasing fractionation of the observed atrial
activations was associated with an increasing number of inter-
acting wavefronts and thus a higher complexity. Faes et al. [12]
used principal component analysis (PCA) in order to quantify
the number of dominant components in the atrial activations, as
an estimate of AA complexity. These authors [12] noticed that
single-lead electrograms recorded at different sites and present-
ing different AA organization were shown to be represented by a
different number of principal components (PCs), with a reduced
number of components representing more organized AA [12].

On the other hand, surface ECG has been demonstrated to
be a valuable cost-effective tool for studying AF [13]. Hence,
more recent studies [14] have attempted a noninvasive evalua-
tion of AF organization through ECG recordings, demonstrating
the possibility of visually evaluating different activation pat-
terns in AF patients, similar to those observed invasively by
Konings et al. [11], although applied to surface recordings in-
stead of electrograms. Body surface potential maps (BSPM) [15]
have also been earlier applied to the study of many cardiac dis-
eases [16], [17], and have the advantage over the conventional
ECG of a much higher spatial resolution. Using BSPM, Guillem
et al. [14] have observed interindividual differences of surface
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atrial fibrillatory activation patterns characterized by an excel-
lent short-term reproducibility.

In line with this study, the present work puts forward a new
automated method for noninvasively evaluating the degree of
spatio-temporal organization of atrial activations during AF. By
means of PCA, AA organization is evaluated quantitatively on
one hand by assessing the spatial complexity of the recorded
surface atrial waveforms and on the other hand by assessing
the temporal stationarity of the AA potential field pattern from
the analysis of BSPM recordings. PCA has been attested to
be a valuable tool both for addressing diverse issues in ECG
analysis [18], and for quantifying AA organization complexity
in invasive recordings [12]. Moreover, the spatial information
derivable from the PCA of the different ECG components in a
multi-lead recordings has turned out to be useful as a first step
in the extraction of the AA from surface ECG [19], [20]. Hence,
complexity and stationarity are quantified herein with novel pa-
rameters that assess the structure of the mixing matrices derived
from the PCA of the different AA segments in the BSPM record-
ing. Furthermore, the discriminatory power of these parameters
in identifying different groups of patients in the dataset under
study is explored. Results are then compared to earlier invasive
studies, highlighting interesting analogies and suggesting their
physiological interpretation, together with their potential useful-
ness in clinical applications. The paper is outlined as follows:
the method is presented in Section II, the results in Section III,
and their discussion is found in Section IV. Finally, conclusions
are given in Section V.

II. MATERIALS AND METHODS

A. BSPM Data and Acquisition System

The same dataset composed of 14 patients as the one in-
troduced in [14] was employed in this study (ten males, four
females; age 68 ± 14 years; AF duration 12 ± 18 months). Pa-
tients were receiving different pharmacological treatments, and
some of them were affected by additional heart disease, like
hypertension or coronary heart diseases. One BSPM signal was
recorded for each patient. All recordings presented persistent
AF. The acquisition system consisted of a total of 56 chest and
back leads acquired simultaneously for each subject. Chest leads
(n = 40) were arranged as a uniform grid around V1 with an
interelectrode distance of 2.2 cm, while back leads (n = 16)
were arranged in a similar way around a lead opposite to V1
(V1post), as shown in Fig. 1(a). Only the first 60 s of each BSPM
recording were analyzed in this study.

Signals were acquired at a sampling frequency of 2048 Hz,
with a resolution of 1 µV and filtered with an antialiasing low-
pass bandwidth of DC-500 Hz.

B. ECG Signal Preprocessing

Signals were processed by applying a third-order zero-phase
high-pass Chebyshev filter with a −3 dB cutoff frequency at
0.5 Hz to remove baseline wandering due to physiologically ir-
relevant low-frequency signal interference (<1 Hz), like breath-
ing influence [21]. That was followed by a third-order zero-

Fig. 1. (a) Arrangement of the electrodes and belt used for their attachment
to the patient. Electrode positions are represented as open circles while V1 and
V1post are denoted by black and gray circles, respectively. Electrodes were
placed around V1 and V1post as a uniform grid. (b) Definition of the dif-
ferent cardiac waves and intervals of interest. At the top, example of normal
sinus rhythm ECG recording, showing the different cardiac waves. At the bot-
tom, example of ECG recording during AF, showing a TQ interval (off:offset;
on:onset).

phase low-pass Chebyshev filter with a −3 dB cutoff frequency
at 100 Hz to remove high-frequency noise, like myoelectric ar-
tifacts. Finally, a zero-phase notch filter at 50 Hz was used to
suppress power-line interference.

All leads in all recordings were visually inspected. Leads
presenting noticeable noise contributions, typically due to a
transient loss of contact in one electrode, were discarded. This
preserved the following PCA from being impaired by the abnor-
mal statistical behavior of these observations. Since the average
of discarded leads was 1 per recording, and taking into account
the large number of leads at our disposal, we considered the
number of remaining leads sufficient for subsequent analysis,
avoiding the interpolation of the discarded leads.

C. AA Recordings

In this study, only TQ segments in the BSPM recording were
analyzed. For this purpose, the R-wave peaks were detected,
and the Q-wave onset and T-wave offset were properly seg-
mented (see Fig. 1(b) for the definition of the different cardiac
waves). Each BSPM lead recording was split in six consecu-
tive 10s-length intervals, and an AA signal was obtained for
each interval concatenating only the TQ segments inside it. To
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Fig. 2. Schematic example of AA recording generation on lead 18 only (lead
V1). Each lead recording is split in consecutive and nonoverlapping 10 s seg-
ments, and all TQ intervals inside a specific segment s are joint in order to get
the AA recording Y(s) .

accomplish that, lead V1 was selected and the R-wave in-
stants detected using a Pan and Tompkins’s QRS detec-
tion method [21]. The detection results were visually in-
spected for each patient, in order to avoid missing de-
tections or artifacts. Then, for each R-wave instant, a
suitable window including the QRS-T complex was de-
fined starting 40 ms before the R-wave instant and termi-
nating tend milliseconds after, where tend = min(RR(ms))
−40 ms, and with RR representing the RR period (R-wave to
following R-wave interval). Finally, all QRS-T complexes were
removed using the introduced window, and all the TQ segments
connected together. Additionally, after QRS-T removal, each
lead was visually inspected and parts of QRS-T complexes still
present further removed, removing the corresponding temporal
part from all the other leads. The synchronism of all R-wave
instants in all leads, and so of all the windows exploited to
remove the QRS-T complexes, guaranteed maintenance of syn-
chronism among leads by the major preprocessing step, guar-
anteeing PCA to obtain an instantaneous representation of the
interaction among the original signals. In this way, for each 56-
lead BSPM recording we constructed six consecutive 56-lead
AA recordings.

Each lead l in the sth AA recording (with s = 1, . . . , 6) is
represented by a row vector

y(s)
l = [y(s)

l (1), . . . , y(s)
l (N)] (1)

where N is the number of samples inside the interval. Then,
the entire ensemble of leads is compactly represented by the
56 × N matrix

Y(s) =




y(s)

1
...

y(s)
56



 .

A schematic example of this procedure is illustrated in Fig. 2
for the sake of clarity, for lead l = 18 only, corresponding
to V1.

D. Principal Component Analysis

ECG is a signal with a high spatial redundancy [18]. One man-
ner to analyze the complex information contained in the ECG is
to transform the original set of signals in a set of components by
minimizing the redundancy among them. This can be achieved
by PCA. Indeed, spatial uncorrelation provided by PCA involves
a linear transformation of the mean-corrected observed signals
Y ∈ Rn , which produces a set of mutually uncorrelated wave-
forms with unit variance X ∈ Rm with (m ≤ n). The PCA of
Y yields an estimate of the following noiseless model:

Y = MX ⇒ X =
[
MTM

]−1 MTY = M!Y (2)

where X is an estimate of the true vector of the unknown com-
ponents, M is the mixing matrix, symbol (·)T stands for the
transpose operator, and symbol (·)! stands for the pseudoin-
verse operator. Even if the model in (2) is supposed to be noise-
less, this model is usually employed in the presence of noise
as well. In that case, the number of PCs generally matches the
number of measured signals, and the last PCs are associated
with noise. The ith column of M represents the source direc-
tion or spatial topography that links the ith component of X
with the observed signals Y. The spatial topography describes
the relative contribution of the uncorrelated components to each
electrode. That means, each one of its entries reflects the spatial
pattern distribution of the relative potential field described by the
associated components onto the spatially-separated electrodes.
PCA reduces the dataset of the observed signals to few repre-
sentative components. The mixing matrix M can be obtained,
e.g., from the singular value decomposition of the observation
matrix Y = UΣVT , where M = UΣ/

√
N , with matrix U

and V containing the left and right singular vectors of Y, re-
spectively, and matrix Σ being the diagonal matrix containing
the singular values σi (≥ 0) at which each PC is associated. σi

indicates how representative is the ith PC in the global data en-
semble. The PCs are usually arranged so that the singular value
sequence appears in a decreasing order. This sequence reflects
some information regarding interlead variability. In fact, a fast
fall-down is associated with a low spatial variability, while a
slow fall-down indicates a large spatial variability. Hence, the
ability of PCA to concentrate the original information in only
k components (number of significant components, k < m) can
be assessed by the cumulative normalized variance vk , an index
that reflects how well the subset of the first k PCs approximates
the ensemble of original observations in energy terms

vk =
∑k

i=1 σ2
i∑m

i=1 σ2
i

. (3)

E. Assessment of Spatio-temporal Organization of the AA

The degree of spatio-temporal organization of the AA dur-
ing AF is noninvasively evaluated as the spatial complexity and
temporal stationarity of the wavefront pattern propagating in-
side the atria, as reflected on the surface ECG. In this paper,
spatial complexity describes the spatial multi-lead variety in the
waveforms of the recorded surface atrial signals, while temporal
stationarity evaluates the preservation of the AA potential field
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Fig. 3. Block diagram of the proposed procedure. AA recording on the sth segment Y(s) is projected on the spatial topographies associated with the most
significant PCs of the initial segment M(1) , yielding the projection Ŷ(s) . k(1)

0 .95 : number of significant components describing 95% of the variance of the first
segment. NMSE: normalized mean square error.

spatial patterns over the experiment. These two aspects are in-
vestigated through the structure of the mixing matrices inferred
from PCA of the different AA segments in the BSPM recording,
introduced in Section II-C. Complexity is analyzed in terms of
the number of components required for explaining 95% of the
variance of the underlying AA, while stationarity is quantified
in terms of the repetitiveness of the mixing matrix along the
BSPM recording, as follows.

1) AA Spatial Complexity: A more organized AA is sup-
posed to be reflected in the structure of the PCA mixing matrix
in terms of a lower number of significant components needed
to describe its variance. To this end, the average number of sig-
nificant components k for all segments s required to explain
95% of the variance (k0.95) is considered a first indicator of AF
organization. More specifically, for a given patient, the PCA of
the sth segment yields an estimate of the noiseless model (2)

Y(s) = M(s)X(s) (4)

and the average number k0.95 is derived over all PCA mix-
ing matrices M(s) . The underlying idea is that low complexity
describes low morphological variability, whereas higher com-
plexity describes larger morphological variability.

2) AA Temporal Stationarity: To increase the discriminatory
power of the analysis, the data in the sth segment are reprojected
on the spatial topographies associated with the k(1)

0.95 most signif-
icant PCs of the initial segment (where superscript (1) identifies
the first segment), stored in the first k columns of matrix M(1) .
This projection can be expressed as

Ŷ(s) = M(1)
k

[
(M(1)

k )TM(1)
k

]−1
(M(1)

k )TY(s)

= M(1)
k (M(1)

k )!Y(s) . (5)

From this relationship, the normalized error between the data
present in the sth segment and their reconstruction from the k(1)

0.95
most significant topographies of the initial segment is computed.
This error measures the temporal stationarity or persistence of
the AA potential field pattern in the BSPM recording as the abil-
ity of M(1) derived for the initial segment Y(1) to retrieve the

AA components of subsequent segments. This is related to the
propensity of the spatial topographies associated with the first
k(1)

0.95 PCs to keep unchanged over the whole experiment. We
assume this measure is inversely proportional to the AF orga-
nization, and thus directly to its complexity. Indeed, the closer
matrices M(s) and M(1) are, the closer the reconstructed obser-
vations with the originals are. Hence, more organized states of
AF are reflected on an increased repetitiveness of the principal
spatial topographies across the surface recording. An example
of the procedure is illustrated in Fig. 3.

The reconstruction error is computed in terms of normalized
mean squared error (NMSEk0 . 9 5 ) on lead 18, corresponding to
V1 (this is the lead from the standard 12-lead ECG that usually
exhibits atrial fibrillatory waves with larger amplitude). In what
follows, subscript index 18 is substituted by V1 for clarity:

NMSE(s)
k0 . 9 5

=
∑N

i=1(y
(s)
V 1(i) − ŷ(s)

V 1(i))
2

∑N
i=1(y

(s)
V 1(i))2

(6)

where y(s)
V 1 denotes the reference signal, actually measured on

V1, ŷ(s)
V 1 an estimate of it, and N their length. High values indi-

cate notable differences between the original and reconstructed
AA signals, while values close to zero are associated with very
similar AA signals.

In addition to the experiment described earlier, a further study
is carried out considering a fixed number of topographies for all
patients, instead of k(1)

0.95 . More specifically in this study, we
consider k = 3, similar to the three most significant compo-
nents, which are supposed to contain most of the information
of the ECG, at least in signals with low complexity [22], [23].
Indeed, some studies claim that the ECG can be well explained
using only three components so that just with the first three
eigenvectors and eigenvalues, the essential information of the
ECG is retained. This property motivated, e.g., the definition of
the T-wave residuum [24], which accounts for the proportion
of the data that lies out of the aforementioned 3-D space where
cardiac signals have been usually represented, such as the vec-
torcardiogram. The idea behind the study proposed here is that
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patients with more organized AA patterns will probably require
a lower number of components to represent 95% of the variance
in the original data. Similarly, if a small number of components
is selected, a better reconstruction is expected for patients with
more organized AA patterns. As a result, the reconstruction er-
ror is once more computed and defined as NMSEk=3 . With this
experiment, the effects of the spatial complexity and temporal
reproducibility of AA patterns are joined in a single param-
eter, and therefore, it is expected to emphasize the differences
between more organized and less organized AF groups. The pro-
cedure is the same as the one shown in Fig. 3, but considering
k = 3 instead of k(1)

0.95 .
In order to enhance the hypothesis that complexity held in the

analyzed signals is really a characteristic related to AA, two ad-
ditional analyses are carried out. First, the possible influence of
the noise on the complexity of the signal is investigated looking
at the correlations of both k0.95 and NMSEk=3 , respectively,
with the energy of the AA segments. Second, the correlation
between the difference NMSEk0 . 9 5 − NMSEk=3 and k0.95 is
investigated in order to test the influence of the method on the
increase of the correlation between complexity and NMSE when
fixing k = 3.

F. Cluster Analysis

The spatio-temporal analysis presented in Section II-E, can
be seen as a new way for noninvasively assessing the degree
of spatio-temporal organization of the AA during AF. Con-
sequently, it appears worthy to investigate the ability of the
proposed parameters to identify different clusters in the dataset
under analysis. To this end, the discriminatory power of k0.95 ,
NMSEk0 . 9 5 , NMSEk=3 is individually considered, and of the
two combinations k0.95 , NMSEk0 . 9 5 and k0.95 , NMSEk=3 is
analyzed, performing five cluster analysis on the whole dataset
(the combination NMSEk0.95 with NMSEk=3 was considered of
no particular meaning, since these two parameters are strongly
related). A K-means algorithm for clustering is used, based on
an iterative partitioning that minimizes the sum, over all clusters,
of the within-cluster sums of point-to-cluster-centroid distances.
The standard metric chosen is the squared Euclidean distance

d =
K∑

j=1

N∑

i=1

‖g(j )
i − cj‖2 (7)

where g(j )
i is a data point of cluster j, cj is the cluster cen-

ter, and d is an indicator of the distance of the N data points
from their respective cluster centers. The number of identified
clusters K is not automatically selected by the algorithm, but
predefined before running it. For this reason, the clustering is
performed for each parameter or combination several times for
a number of clusters (!K) varying from 2 to 4. We fixed the
highest number of clusters to test at 4 because AF organization
has been generally subdivided in three or four different levels
by earlier accepted invasive studies [10], [11]. Conversely, 2
was considered as the smallest reasonable number of clusters,
since 1 means no clustering. Then, the quality of the clustering
provided by each parameter or combination is assessed through

a suitable criterion, named Silhouette [25]. This is one of the
most popular and widely accepted measures in the literature to
assess the success of clustering process [26]. Silhouette is de-
fined in the following manner. For each object x ∈ Ci , let a(x)
be the average distance of x from all other objects in cluster
Ci . For every other cluster C *= Ci , let δ(x, C) be the average
distance of x from the objects in C. After computing δ(x, C)
for all clusters C *= Ci , let b(x) be the smallest. The cluster for
which this minimum is attained is called the neighbor of x. The
number S(x) is given by

S(x) =
b(x) − a(x)

max(a(x), b(x))
(8)

and provides a measure of how well object x fits into cluster Ci

rather than the neighboring cluster. If S(x) is close to 1, object
x can be said to be well classified. If S(x) is close to 0, it is
unclear whether x should belong to cluster Ci or to its neighbor.
A negative value suggests that x has been misclassified. The
average silhouette width of a clustering (S̄) is the arithmetic
mean of the silhouette value of all objects in the dataset. A
value of Silhouette S̄ has been calculated for each parameter
or combination, and for each !K. Moreover, each S̄ value has
been calculated averaging all the 14 values of S̄ obtained on
the dataset at our disposal by a procedure reminiscent of the
one-leave one-out technique [27], as follows: each S̄ has been
calculated as its average obtained leaving out one patient at a
time and evaluating the clustering on the remaining 13.

Finally, the clusters associated with the parameter or combi-
nation showing the highest performance (highest S̄) are selected
for further analysis, just in terms of cluster discriminatory qual-
ity, without any kind of subjective physiological interpretation.
Mean values of spatial complexity k0.95 and temporal station-
arity NMSEk=3 are calculated for each cluster. Additionally,
the level of significant difference among the obtained clusters
is also evaluated for the variances of the selected parameter or
combination over all the segments, further to its mean values,
already exploited for the clustering. A significant result would
strengthen further differences among the clusters already high-
lighted for their mean values. Results in terms of average com-
plexity of the different clusters are then compared with earlier
invasive studies, in order to suggest possible analogies between
them and to hazard a possible physiological interpretation, sug-
gesting they can be considered as a marker of reflection of the
AF organization type on the surface ECG.

G. Statistical Analysis

Mean values of parameter k0.95 have been calculated for
each patient averaging its values over segments s = 1, . . . , 6.
Mean values of parameters NMSEk0 . 9 5 and NMSEk=3 have
been calculated for each patient averaging their values over
segments s = 2, . . . , 6. Pearson’s correlation coefficient r is
calculated for each relation analyzed in the study. Statistical
significances have been evaluated by means of Welch’s t-test.
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Fig. 4. Values of each parameter in segments 2–6 for each analyzed patient
(•); mean values are also shown for each patient (×). (a) Values of k0 .95 .
(b) Values of NMSEk 0 . 9 5 . (c) Values of NMSEk=3 . Note that k0 .95 is an
integer and dots can sometimes overlap.

III. RESULTS

A. Spatio-temporal Organization of the AA During AF

Fig. 4(a)–(c) shows the values of parameters k0.95 ,
NMSEk0 . 9 5 , and NMSEk=3 , respectively, in segments 2–6 for
each analyzed patient (•), reporting also the mean value for each

Fig. 5. Results of the spatio-temporal organization analysis NMSEk 0 . 9 5 ver-
sus k0 .95 (©) and NMSEk=3 versus k0 .95 (,). Dotted line summarizes the
linear regression of NMSEk 0 . 9 5 versus k0 .95 . Dashed line summarizes the lin-
ear regression of NMSEk=3 versus k0 .95 . Values of the correlation coefficients
r and their significance p for each analysis are also reported.

patient (×). Notice the differences in the mean values and in the
variances for the different patients.

The results of the spatio-temporal organization analysis are
presented in Fig. 5. Both analyses NMSEk0 . 9 5 versus k0.95 (©)
and NMSEk=3 versus k0.95 (,) are shown, together with the
values of the correlation coefficients r and significance p for
each analysis. Mean values of parameters k0.95 , NMSEk0 . 9 5 , and
NMSEk=3 have been calculated for each patient as explained in
Section II-G.

Correlation coefficient r = 0.64 (>0.05) for the analysis
NMSEk0 . 9 5 versus k0.95 (©) underlines a positive correlation
between the two parameters, which is representative of the en-
semble of the data (p < 0.05), as reported in Fig. 5. This positive
correlation points out the inverse correlation between stationar-
ity and complexity, hypothesized in Section II-E. Selecting the
k = 3, most significant topographies of the initial segment, as
introduced in Section II-E2, the average reconstruction errors
(NMSEk=3) across the remaining segments between the data in
the original segments and their projections increased generally
in patients presenting higher complexity (k0.95 > 4), as shown
by the analysis NMSEk=3 versus k0.95 (,). The significant in-
crease in the correlation of the two parameters is underlined by
the reciprocal increase in the correlation coefficient r = 0.76
(p < 0.01), as reported in Fig. 5. AA signal reconstruction is
generally better for signals showing low complexity. No signif-
icant correlation was found between both k0.95 and NMSEk=3 ,
respectively, with the energy of the segments. Again, no signifi-
cant correlation was found between the difference NMSEk0 . 9 5 −
NMSEk=3 and k0.95 .

B. Cluster Analysis

Results of the cluster analysis as introduced in Section II-F
are summarized in Table I.

The parameter showing the highest performance is
NMSEk0 . 9 5 (0.761) with a number of classes equals to 3.
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TABLE I
CLUSTERING QUALITY ASSESSMENT THROUGH AVERAGE SILHOUETTE WIDTH

OF CLUSTERINGS S̄

Fig. 6. Cluster analysis based on parameter NMSEk=3 with !K = 2. Cluster
1 (•) is characterized by low complexity and high stationarity across the BSPM
recording (or low NMSEk=3 ), while Cluster 2 (×) is characterized by higher
complexity and lower stationarity (higher NMSEk=3 ).

However, for the same number of classes, NMSEk=3 shows
a very similar value (0.741). Looking at the provided clusters,
we noticed that the two clustering differed for just one object
differently classified (patient !11), and that both were charac-
terized by having a cluster containing only one object (the same
for both, patient !13). Looking at Fig. 4(b) and (c), we can
notice that patient !13 is the one showing the highest value of
NMSE in both cases. Moreover, its segments are characterized
by values of NMSEk0 . 9 5 and NMSEk=3 noticeably overlapping
the ones of the other patients (see Fig. 4(b) and (c), respec-
tively; this observation is particularly evident for NMSEk0 . 9 5 ).
Therefore, we found it reasonable to move patient !13 to the
cluster gathering the highest values of NMSE, thus considering
!K = 2. In this scenario, it can be noticed that NMSEk=3 is the
parameter appearing as the most discriminant, since associated
with the highest value of S̄ = 0.700 (first column of Table I).
Hence, NMSEk=3 is the parameter selected for further analysis.
Fig. 6 shows the output of the clustering based on NMSEk=3 ,
with !K = 2. As can be noticed, one cluster (•) is character-
ized by low complexity and high stationarity (or repetitiveness
of the PCA mixing matrix) across the BSPM recording (low
NMSEk=3), while the second (×) is characterized by higher
complexity and lower stationarity (higher NMSEk=3).

Table II summarizes the statistics of parameters k0.95 and
NMSEk=3 (mean±SD) for each cluster obtained exploiting

TABLE II
MEAN PARAMETER VALUES FOR AA SPATIO-TEMPORAL ANALYSIS,

FOR !K = 2

Fig. 7. Variances of parameter NMSEk=3 over all segments in the same
patient, grouped according to cluster analysis based on NMSEk=3 in order
to visually emphasize the significant difference between the two subgroups of
patients.

NMSEk=3 . Rounded numbers of k0.95 are 4 for the first cluster
(range 2–7) and 8 for the second cluster (range 4–10).

A Welch’s t-test was performed on the variances of param-
eter NMSEk=3 over all the AA segment recordings for each
patient, grouped as in the two clusters. By means of this analy-
sis, the differences in the variances of NMSEk=3 values, earlier
observed in Fig. 4(c), were investigated. A significant differ-
ence was observed for the variances of NMSEk=3 between the
two clusters (p < 0.05), as portrayed in Fig. 7. This underlines
the significant difference in terms of reconstruction error, and
then stationarity, between AA signals characterized by different
complexity, strengthening the idea that the proposed parameters
may discriminate between them.

IV. DISCUSSION

The degree of organization in the AA during AF has been
observed to be related to its chronification [28], [29] and thus
potentially to better lead its treatment [30]. Nonetheless, a stan-
dard noninvasive procedure to assess AF organization still lacks
nowadays, despite its potential relevance in clinical decision
making. This study has put forward a novel automated approach
to noninvasively evaluate the degree of spatio-temporal organi-
zation in the AA during AF. A quantitative assessment of AA
organization was carried out by means of PCA by assessing the
spatial complexity and temporal stationarity of the wavefront
patterns on the surface ECG. Complexity and stationarity were
investigated through parameters k0.95 and NMSEk=3 , respec-
tively, evaluating the structure of the mixing matrices derived
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by the PCA of the different AA segments across the BSPM
recording. Two are the main results of this study, and both may
already support the usefulness of these parameters in clinical
applications. The first finding is the significant positive corre-
lation between parameters k0.95 and NMSEk0 . 9 5 . This result
supports the hypothesis that the level of organization of the AA
signal recorded on the surface of the body during AF is re-
lated both to the complexity of its recorded electrical activity
and to the tendency of its potential field spatial pattern to re-
main unchanged over time, showing that these two features can
both be noninvasively evaluated. The second finding is the abil-
ity of the proposed parameters, and of NMSEk=3 in particular,
to produce robust clusters, which are characterized by features
comparable with those obtained in earlier invasive studies on
AF organization classification, thus suggesting for the first find-
ing a physiological interpretation, and the possibility to exploit
these parameters in the future for noninvasive AF organization
classification.

Moreover, the absence of significant correlations of both k0.95
and NMSEk=3 , respectively, with the energy of the segments
in a BSPM recording, suggests that the influence of the noise
can be considered the same in any recording, and thus, the
complexity reasonably supposed to be independent of it. Again,
the absence of a significant correlation between the difference
NMSEk0 . 9 5 − NMSEk=3 , and k0.95 suggests that the increase
in the correlation between NMSE and k0.95 , when fixing k = 3,
cannot be considered as an artifact of the method.

A. Comparison With Invasive Studies

The aforementioned second finding is of particular interest
because the rounded values of k0.95 calculated for both clusters
are 4 for one cluster and 8 for the other. These values are similar
to those obtained by Faes et al. [12] (4 versus 4, respectively, 8
versus 9) when analyzing the number of components needed to
represent 95% of the variance in more or less organized AF in
a single-lead electrogram recording. Indeed, Faes et al. showed
that a more organized AF can be represented by a reduced num-
ber of components (4), compared to a more disorganized AF
(which needs nine components). The consistency between the
results provided by the two studies, made us hypothesize an
analogy between them, and therefore, suggests for them a phys-
iological interpretation. This is, a reflection of the underlying
AF organization complexity seems to be present on the surface
ECG. In any case, Faes et al. presented a local measure of the
temporal organization of AF, since they analyzed single-lead
electrograms. Conversely, the present study introduced nonin-
vasive global indices of the spatio-temporal organization of the
whole AA as measured on surface recordings. Finally, it is worth
noticing that the two clusters obtained through NMSEk=3 and
exploited for further analysis have been selected just in terms
of clustering quality, without any kind of additional (possibly
subjective) physiological priors.

B. Comparison With Noninvasive Studies

The possibility of analyzing the global activity of the atria
through noninvasive recordings during AF has been widely con-

sidered [31]. The noninvasive assessment of human AF organi-
zation through Holter ECG recordings was earlier described by
Alcaraz et al., both in the attempt to predict the spontaneous ter-
mination of paroxysmal AF [32], and to describe the paroxysmal
AF time variation [33]. However, the use of a limited number
of leads could prevent the exploitation of the spatial diversity
of multi-lead ECGs and might not be always representative of
the voltages that can be recorded from the whole body surface.
In this scenario, only the temporal information over just one or
few leads is exploited, and the useful spatial information given
by a multi-lead system is completely disregarded. The idea in
this study is to reason more at an interlead spatial information
level than at an intralead temporal information level.

A comparison with the results earlier obtained by Guillem
et al. [14] on the same dataset was carried out, even in the ab-
sence of a gold standard for both, in order to compare two differ-
ent noninvasive methodologies. Guillem et al. [14] performed a
visual classification of AF making use of a noninvasive method
based on wavefront propagation mapping, according to the same
criteria and terminology for classification as those of Konings
et al. [11], although applied to surface recordings instead of
electrograms. Using the method in [14], six patients were clas-
sified as AF type I (single wavefront propagating across the
body surface) and eight as AF type II/III (no observable clear
wavefront or multiple wavefronts that do not propagate across
the body surface observed simultaneously). In the hypothesis of
considering patients classified as AF type I by Guillem as com-
parable to those in this study belonging to the cluster showing
lower complexity (Cluster 1), and patients classified as AF type
II/III as comparable to those belonging to the cluster showing
higher complexity (Cluster 2), 10 out of 14 patients have been
labeled in the same way by both methodologies. The compari-
son showed interesting similarity (10 out of 14 patient equally
classified), pointing out the importance of the high spatial diver-
sity offered by BSPM recordings. Differently classified patients
might be due to the different temporal resolutions employed
by the two methods. Indeed, in [14], each cycle was analyzed
individually (160 ms for a typical atrial dominant cycle length,
but it varies for each patient), compared with 10 s employed in
this study.

C. General Remarks and Limitations

Different studies based on invasive recordings have shown
that the atrial electrical activity during AF presents a significant
spatial inhomogeneity [5], [34], with coexistence of atrial areas
characterized by different AA organization, which is more ev-
ident in patients with paroxysmal AF [6], [12]. Particularly, in
patients with chronic AF, a shortening of the AA intervals and a
greater prevalence of disorganized activity in all the atrial sites
examined was observed. However, in patients with paroxysmal
AF, a significant dispersion of refractoriness was observed [6].
Direct correlation of our observations with these findings cannot
be inferred because of the lack of simultaneous invasive record-
ings, so that the actual mechanisms of AF in each patient are
unknown. Moreover, the dataset is composed by only persistent
AF recordings. Nonetheless, it might be expected that the global
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perspective on the underlying AA given by surface ECG record-
ings mainly reflects the behavior of the atrial areas characterized
by an AF type similar to the predominant one observed on the
body surface.

We investigated if the temporal length of the TQ segments
(and then the RR periods) influenced the stationarity and com-
plexity of the AA signals. No significant correlation was found.
Thus, the RR periods did not bias the analysis. Moreover, even if
the way TQ segments have been concatenated is rough, without
any kind of smoothing or interpolation, this is not a problem
for PCA. Indeed, PCA concentrates on variances, and therefore,
it is based on the second-order statistics of the signals under
analysis at zero time lag, i.e., the coherence between consecu-
tive samples is ignored. Therefore, PCA is not affected by the
specific temporal location of each sample, or, in other words, its
results are not influenced by the fact of using temporally con-
secutive samples. Finally, it is worthy to notice that only the AA
in the TQ segments has been considered in this study. Hence,
since the QRS-T complexes have been discarded, they have no
influence on the final results.

The model exploited in this study for the evaluation of the
temporal stationarity of the AA topographies over the experi-
ment is similar to the one proposed by Rieta et al. [35], used
to corroborate the hypothesis that an AF recording satisfies the
independent component analysis model, in terms of stationar-
ity of the projection coefficients. Nonetheless, as opposed to
that model, mixing matrix repetitiveness is herein analyzed in
terms of similarity between the original observations and the
reconstructed ones.

One limitation of this study is the absence of simultane-
ous electrograms in order to have an objective reference for
a Koning’s-like classification of the patients in different AF
classes. A second limitation is that the method was applied only
on the TQ segments in the BSPM recording. This was done in
order to avoid interferences on the estimation of the complexity
due to the presence of QRS complex residues in the remainder
ECG, since a QRS-T cancellation or AA extracting method able
to produce a remainder ECG free from QRS residues still does
not exist. Moreover, AA extracting methods containing a first
estimation based on PCA were avoided, since the analysis pre-
sented here, also based on PCA, could be in some ways biased
by them. Another limitation is that this study was conducted
on a reduced set of patients. Nonetheless, p-value significances
of the obtained results makes them promising despite the small
dataset. Again, it is proper to point out that spatial complex-
ity and temporal stationarity are, in the context arising from
the definitions provided, related concepts, and thus they can be
only in part viewed as different aspects of the general concept
of AF organization. Even if this study has proved that high
complexity generally results in low stationarity, the possibility
to observe highly complex and also highly stationary patterns
remains something that has to be proven. Finally, despite the
undeniable usefulness of the high spatial resolution given by
BSPM recordings, the possibility to employ this analysis on
standard 12-leads ECGs, more frequently needed in clinical
practice, needs to be assessed in future studies. Always due to
the lack of simultaneous electrograms, to future study is also

left the question if the proposed parameters may be used for
noninvasive AF classification, and thus the confirmation of the
presence of a reflection of the AF organization on the surface
ECG.

V. CONCLUSION

Spatio-temporal organization in the AA during AF can be
noninvasively and quantitatively evaluated from BSPM record-
ings. This can be carried out looking at the reflection on the
surface ECG of the spatial complexity of the recorded electri-
cal activity and of the temporal stationarity of its potential field
spatial pattern. We observed a significant correlation, charac-
terized by features comparable with those obtained in earlier
invasive studies on AF organization classification. Hence, au-
tomated analysis of AF organization in surface recordings is
indeed possible and our results strongly support the appropri-
ateness of signal-processing approaches exploiting spatial di-
versity in AF analysis. Analogies with earlier invasive studies
suggest the potential of noninvasive techniques for providing
physiologically meaningful results.
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versidad Politécnica de Valencia (UPV), Valencia, in
1997.

He is currently a Full Professor in the Department
of Electronics Engineering, UPV, where he has also
been the Coordinator of the Biomedical Engineer-
ing branch, Institute for Applications of Advanced
Information and Communication Technologies. His

research interests include biomedical signal processing, biomedical signal ac-
quisition and instrumentation, implantable devices for treatment of cardiac ar-
rhythmias, and Cardiac MRI.

Vicente Zarzoso (S’94–M’03) graduated with high-
est distinction in telecommunications engineering
from the Polytechnic University of Valencia, Valen-
cia, Spain, in 1996. He received the Ph.D. degree
from the University of Liverpool, Liverpool, U.K.,
in 1999, and the Habilitation to Lead Researches de-
gree from the University of Nice-Sophia Antipolis,
France, in 2009.

From 2000 to 2005, he was a Research Fellow
at the Royal Academy of Engineering, U.K. Since
2005, he has been at the Computer Science, Signals

and Systems Laboratory of Sophia Antipolis (I3S), France. His research interests
include statistical signal and array processing and its application to biomedical
problems and communications.

Francisco Castells was born in Valencia, Spain, in
1976. He received the M.Eng. degree in telecommu-
nications engineering from Universidad Politécnica
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