Séminaire COATI : Exposé de Florian Hörsch, chercheur postdoctoral

Florian Hörsch, chercheur postdoctoral au CISPA, Saarbrücken, Germany, donnera un séminaire, en visioconférence, le jeudi 5 mars 2026 à 10h30 au Centre Inria d'Université Côte d'Azur dans la salle Euler Violet.

 

TITLE

Maximum Reachability Orientation of Mixed Graphs 


ABSTRACT

We aim to find orientations of mixed graphs optimizing the total reachability, a problem that has applications in causality and biology. For given a digraph D, we use P(D) for the set of ordered pairs of distinct vertices in V(D) and we define $\kappa_D:P(D)\rightarrow \{0,1\}$ by $\kappa_D(u,v)=1$ if v is reachable from u in D, and $\kappa_D(u,v)=0$, otherwise. We use $R(D)=\sum_{(u,v)\in P(D)}\kappa_D(u,v)$. Now, given a mixed graph G, we aim to find an orientation $\vec{G}$ of G that maximizes $R(\vec{G})$. We show that this problem is NP-hard and APX-hard, answering a question Hakimi, Schmeichel and Young. The problem being polynomial time solvable in undirected graphs, we consider the parameterized complexity of the problem with respect to the number k of preoriented arcs of G. We show that the problem can be solved in time $n^{O(k)}$ and that a $(1-\epsilon)$-approximation can be computed in time $f(k,\epsilon)n^{O(1)}$ for any $\epsilon > 0$.